

2024 Mathematics

Higher - Paper 1

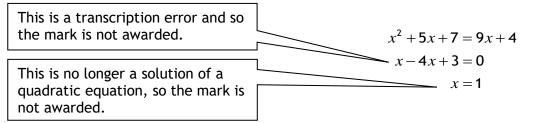
Question Paper Finalised Marking Instructions

© Scottish Qualifications Authority 2024

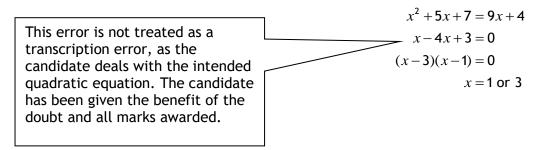
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

General marking principles for Higher Mathematics


Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:


- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
- (h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0.3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 144 must be known.

- (k) Commonly Observed Responses (CORs) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example $(x^3 + 2x^2 + 3x + 2)(2x + 1)$ written as

 $(x^3 + 2x^2 + 3x + 2) \times 2x + 1$

 $=2x^{4}+5x^{3}+8x^{2}+7x+2$ gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.

- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Marking Instructions for each question

Q	uestion	Generic scheme	Illustrative scheme	Max mark
1.		• ¹ use $m = \tan \theta$	• ¹ $m = \tan 30^{\circ}$	3
		• ² evaluate exact value	$\bullet^2 \frac{1}{\sqrt{3}}$	
Note		• ³ determine equation	• ³ eg $y = \frac{1}{\sqrt{3}}x + 4$ or $\sqrt{3}y - 4\sqrt{3} = x$	

Notes:

1. Do not award \bullet^1 for $m = \tan^{-1} 30^\circ$. However \bullet^2 and \bullet^3 are still available.

- 2. Do not penalise the omission of a degree symbol at \bullet^1 .
- 3. Where candidates make no reference to a trigonometric ratio, or use an incorrect trigonometric ratio, \bullet^1 and \bullet^2 are unavailable. See Candidate A.
- 4. \bullet^3 is only available as a consequence of attempting to use a tan ratio. See Candidate F.
- 5. \bullet^3 is not available for using a gradient of 30.
- 6. At •³ accept any rearrangement of a candidate's equation where constant terms have been simplified.

7. Accept
$$y-4 = \frac{1}{\sqrt{3}}(x)$$
 but not $y-4 = \frac{1}{\sqrt{3}}(x-0)$ for •³.

Commonly Observed Responses:

Candidate A - no tr	rig ratio	Candidate B		Candidate C	
$m = \frac{1}{\sqrt{3}}$	●1 ▲ ●2 ✓ ₂	$m = \tan \theta$ $y = \frac{1}{\sqrt{3}}x + 4$	●1 ▲ ●2 ✔ ●3 ✔	$m = \tan \theta$ $y = \sqrt{3}x + 4$	•1 ^
$y = \frac{1}{\sqrt{3}}x + 4$	• ³ √ 1	√3 			
Candidate D		Candidate E - no re	ference	Candidate F - not u	sing tan
$m = \tan \theta = 30$	•1 🗶	to <i>m</i>		$m = \sin 30^{\circ}$	●1 \$
$m = \frac{1}{\sqrt{3}}$	• ² ✓ 1	$\tan 30^\circ = \frac{1}{\sqrt{3}}$	•2 🗸	$m=\frac{1}{2}$	• ² ✓ ₂
$y = \frac{1}{\sqrt{3}}x + 4$		$y-4=\frac{1}{\sqrt{3}}(x-0)$		$y = \frac{1}{2}x + 4$	• ³ ✓ 2
		$y = \frac{1}{\sqrt{3}}x + 4$	•3 🗸		

Q	uesti	on	Generic scheme	Illustrative scheme	Max mark
2.	(a)		• ¹ calculate second term	• ¹ 16	1
Note	es:				
1. (Candid	lates v	who use $u_0 = 20$ and then calculate u	$_1 = 16$ gain \bullet^1 .	
Com	monly	y Obse	erved Responses:		
	(b)	(i)	• ² communicate condition for limit to exist	• ² a limit exists as $-1 < \frac{1}{5} < 1$	1
		(ii)	• ³ know how to calculate a limit	• ³ $\frac{12}{1-\frac{1}{5}}$ or $L = \frac{1}{5}L + 12$	2
			• ⁴ calculate limit	• ⁴ 15	
Note	es:				
4. (5. [6. •	2. For • ² accept: any of $-1 < \frac{1}{5} < 1$ ' or $\left \frac{1}{5}\right < 1$ ' or $0 < \frac{1}{5} < 1$ ' with no further comment; or statements such as: $\left \frac{1}{5}\right $ is between -1 and 1' or $\left \frac{1}{5}\right $ is a proper fraction'. 3. • ² is not available for: $\left -1 \le \frac{1}{5} \le 1$ ' or $\left \frac{1}{5} < 1\right $ or statements such as: $\left 1\right $ is between -1 and 1.' or $\left \frac{1}{5}\right $ is a fraction'. 4. Candidates who state $-1 < a < 1$ can only gain • ² if it is explicitly stated that $a = \frac{1}{5}$. 5. Do not accept $L = \frac{b}{1-a}$ with no further working for • ³ . 6. • ³ and • ⁴ are not available to candidates who conjecture $L = 15$ following the calculation of further terms in the sequence. 7. For $L = 15$ with no working award 0/2.				
Com	monly	y Obse	erved Responses:		
<i>a</i> = -	Commonly Observed Responses: Candidate A $a = \frac{1}{5}$ $-1 < a < 1$ so a limit exists $e^2 \checkmark$			andidate B - no explicit reference to a $a_{n+1} = au_n + b$ $a_{n+1} = \frac{1}{5}u_n + 12$ $1 < a < 1$ so a limit exists e^2	

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark
3.			• ¹ start to differentiate	• 1 $7(5x^{2}+3)^{6}$	2
			• ² complete differentiation	• ² × 10 x	
Note	es:				
1. •	¹ is av	varde	d for the appearance of $7(5x^2+3)$	$(3)^{6}$.	
2. F	or 70	$x(5x^2)$	$(2+3)^6$ with no working, award 2/2	2.	
3. A	Accept	7u ⁶	where $u = 5x^2 + 3$ for \bullet^1 .		
			d \bullet^2 where the answer includes '-	+ <i>c</i> '.	
Com	monly	/ Obs	erved Responses:		
Cano	didate	A - c	lifferentiating over two lines	Candidate B - poor notation	
7(5.	$x^2 + 3$	6	• ¹ 🗸	$y = (5x^2 + 3)^7$ $y = 5x^2 + 3$	
7(5.	$x^2 + 3$	⁶ ×10	x • ² ^	$\frac{dy}{dx} = 10x$	
				$\frac{dy}{dx} = 7\left(5x^2 + 3\right)^6 \times 10x \qquad \bullet^1 \bullet$	•2 ✓
Cano	Candidate C - poor communication			Candidate D - insufficient evidence fo	r ● ¹
<i>y</i> =	$(5x^2 +$	3)7		$70(5x^2+3)^6$ •1 s	• ² ×
<i>y</i> = 7	$7(5x^2)$	+3)6	$\times 10x$ $\bullet^1 \checkmark \bullet^2 \checkmark$	or $35(5x^2+3)^6$ • ¹ 3	• • ² ¥

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
4.		Method 1 • ¹ interpret ratio	$ \begin{array}{c} $	2		
		• ² find coordinates of R	• ² (-4,5,-2)			
		Method 2 • ¹ interpret ratio	Method 2 •1 eg $\overrightarrow{PR} = \frac{2}{5}\overrightarrow{PQ}$, $\overrightarrow{QR} = \frac{3}{5}\overrightarrow{QP}$ or $\overrightarrow{PR} = \frac{2}{3}\overrightarrow{RQ}$			
		• ² find coordinates of R	• ² (-4,5,-2)			
		Method 3 • ¹ use section formula	Method 3 • $\frac{1}{5}(3p+2q)$ • $(-4,5,-2)$			
		• ² find coordinates of R	• ² (-4,5,-2)			
 Fe Fe Fe Fe 	Notes: 1. For $(-4,5,-2)$ without working award 2/2. 2. For $\begin{pmatrix} -4\\5\\-2 \end{pmatrix}$ without working award 1/2. 3. For $(-3,7,-4)$ (ratio of 3:2 with working) award 1/2. See Candidate A. 4. For $\begin{pmatrix} -3\\7\\-4 \end{pmatrix}$ without working award 0/2.					
		erved Responses:				
	didate A $\frac{3}{5}\overrightarrow{PQ}$ (-3,7,-4)	• ¹ X • ² ✓ 1 31 35 16	andidate B $\frac{\vec{R}}{\vec{Q}} = \frac{2}{3}$ • ¹ \checkmark $\vec{PR} = 2\vec{RQ}$ $(\mathbf{r} - \mathbf{p}) = 2(\mathbf{q} - \mathbf{r})$ $\vec{r} = 2\mathbf{q} + 3\mathbf{p}$ reading to correct answer of $= (-4, 5, -2)$ • ² \checkmark			

Question	Generi	c scheme		Illustrative	scheme	Max mark
4. (continued)						
Candidate C $\overrightarrow{PQ} = \begin{pmatrix} 5\\10\\-10 \end{pmatrix}$ $R = \begin{pmatrix} 2\\4\\-4 \end{pmatrix}$ $R = \begin{pmatrix} -6\\1\\2 \end{pmatrix} + \begin{pmatrix} 2\\4\\-4 \end{pmatrix}$ (-4)		• ¹ ✓	Candida $\overrightarrow{PR} = \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}$ R(-8,-3,	4)	• ¹ ✓ • ² ≭	
$R = \begin{pmatrix} -4 \\ 5 \\ -2 \end{pmatrix}$ $R(-4, 5, -2)$		●2 ✓				
Candidate E - st values 2	epping out using : 3 5	absolute				
	or 3 -1					
	r r r r r r r r r r					
	or 6	• ¹ ✓ • ² ✓				

C	Juestio	on	Generic scheme	Illustrative scheme	Max mark	
5.			Method 1	Method 1	3	
			• ¹ equate composite function to x	• ¹ $h(h^{-1}(x)) = x$		
			$ullet^2$ write $hig(h^{-1}ig(x)ig)$ in terms of $h^{-1}ig(xig)$	• ² $2(h^{-1}(x))^3 - 7 = x$		
			• ³ state inverse function	• ³ $h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$		
			Method 2	Method 2		
			• ¹ write as $y = h(x)$ and start to rearrange	• ¹ $y = h(x) \Longrightarrow x = h^{-1}(y)$ $y + 7 = 2x^{3}$		
			• ² express x in terms of y	• ² $x = \sqrt[3]{\frac{y+7}{2}}$		
			• ³ state inverse function	• ³ $h^{-1}(y) = \sqrt[3]{\frac{y+7}{2}}$		
				$\Rightarrow h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$		
Not	es:					
1.	In met	thod '	1, accept $2(h^{-1}(x))^3 - 7 = x$ for \bullet^1 ar	nd • ² .		
				ence to $y = h(x) \Longrightarrow x = h^{-1}(y)$ at \bullet^1 .		
3.	In met	thod 2	2, accept $h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$ without re	eference to $h^{-1}(y)$ at \bullet^3 .		
	In met	thod 2		g where each line is not mathematica	ally	
5.	At • ³ s	stage,	accept h^{-1} written in terms of any	dummy variable.		
	For example $h^{-1}(y) = \sqrt[3]{\frac{y+7}{2}}$.					
6.	$y = \sqrt[3]{\cdot}$	$\frac{x+7}{2}$	does not gain \bullet^3 .			
7.	$h^{-1}(x)$	$)=\sqrt[3]{\frac{1}{2}}$	$\frac{x+7}{2}$ with no working gains 3/3.			

Question	Generic scheme	Illustrative scheme	, Max mark
5. (continued)			
Commonly Obse	erved Responses:		
Candidate A		Candidate B	
$h(x) = 2x^3 - 7$	1	$h(x) = 2x^3 - 7$	
$y = 2x^3 - 7 - 7$		$y = 2x^3 - 7$ -	
$x = \sqrt[3]{\frac{y+7}{2}}$	• ¹ • • ² •	$x = 2y^3 - 7 - 1$	• ¹ ¥
$y = \sqrt[3]{\frac{x+7}{2}}$		$h(x) = 2x^{3} - 7$ $y = 2x^{3} - 7$ $x = 2y^{3} - 7$ $y = \sqrt[3]{\frac{x+7}{2}}$ $y = \sqrt[3]{\frac{x+7}{2}}$	• ² ✓ 1
1 2		$h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$	● ³ ✓ 1
$h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$		V Z	
Candidate C	(Candidate D - Method 1	
$x = 2h(x)^3 - 7$	• ¹ x j	$h(h^{-1}(x)) = 2(h^{-1}(x))^3 - 7$	• ² ✓
$h(x) = \sqrt[3]{\frac{x+7}{2}}$		$x = 2(h^{-1}(x))^3 - 7$	●1 ✓
$h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$	• ³ √ 1	$h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$	•3 🗸
Candidate E	(Candidate F - BEWARE of inco	orrect notation
$x \to x^3 \to 2x^3 -$	$\Rightarrow 2x^3 - 7 = h(x) \qquad \qquad$	h'(x) =	• ³ x
$\begin{array}{c} \times 2 \rightarrow -7 \\ \therefore +7 \rightarrow -7 \end{array}$			
$\sqrt[3]{\frac{x+7}{2}}$	• ² ✓		
$h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$	• ³ 🗸		

ر ر	uestic	on	Generic scheme		Illustrative scheme	Max mark
6.	(a)	(i)	• ¹ find value of $\cos p$		• ¹ $\cos p = \frac{2}{\sqrt{5}}$ stated or implied by • ²	3
			• ² substitute into the formul sin 2 p	a for	• ² $2 \times \frac{1}{\sqrt{5}} \times \frac{2}{\sqrt{5}}$	
			• ³ simplify answer		• ³ $\frac{4}{5}$	
		(ii)	• ⁴ evaluate $\cos 2p$		• ⁴ $\frac{3}{5}$	1
Note	s:					
4. • 5. D	alue f ³ is on 10 not uestic	or •² t ly ava pena on.	o be awarded. ilable as a consequence of su	bstituting	p , subsequent working must follow f into a valid formula at \bullet^2 . ss than -1 or greater than 1 through	
				Candidat	e B - no evidence of Pythagoras	
				canalaat	• ¹ ^	
	$\frac{1}{5} \times \frac{\sqrt{6}}{\sqrt{5}}$		•' x • ² ✓ 1	$\frac{2 \times \frac{1}{\sqrt{5}} \times \frac{1}{2\sqrt{6}}}{\frac{2\sqrt{6}}{5}}$	$\frac{\sqrt{6}}{\sqrt{5}}$ • ² ×	
$\frac{2\sqrt{6}}{5}$	idate)	• ² ✓ 1 • ³ ✓ 1	$\frac{2\sqrt{6}}{5}$	• ³ ✓ 1	
·		~				
 Candi 2×sir			$\frac{1}{5}$ $e^{1} \checkmark e^{2} \bigstar$			
2×sin			5 • ¹ ✓ • ² x • ³ x			
					• ⁵ 24/25	1
2×sin	$\frac{1}{\sqrt{5}} \times$		• ³ ×		• ⁵ 24/25	1
$2 \times \sin \frac{4}{5}$	$\frac{1}{\sqrt{5}} \times$ (b)	$\cos \frac{2}{\sqrt{2}}$	• ³ ×	d as a sin		1
$\frac{4}{5}$ Note 6.	$\frac{1}{\sqrt{5}} \times$ (b)	cos $\frac{2}{}$	• ³ x	d as a sin		1

Q	uestion	Generic scheme	Illustrative scheme	Max mark
7.		Method 1	Method 1	4
		• ¹ substitute for y	• $x^{2} + (2x)^{2} - 14x - 8(2x) + 45 = 0$	
		• ² write in standard quadratic form	• ² $5x^2 - 30x + 45 = 0$	
		• ³ determine <i>x</i> -coordinate	• ³ 3	
		• ⁴ determine <i>y</i> -coordinate	• ⁴ 6	
		Method 2	Method 2	
		• ¹ substitute for x	$\bullet^{1}\left(\frac{y}{2}\right)^{2} + y^{2} - 14\left(\frac{y}{2}\right) - 8y + 45 = 0$	
		• ² write in standard quadratic form	• ² $\frac{5}{4}y^2 - 15y + 45 = 0$	
		• ³ determine <i>y</i> -coordinate	• ³ 6	
		• ⁴ determine <i>x</i> -coordinate	•4 3	
		Method 3	Method 3	
		• ¹ use centre and perpendicular gradient to determine equation of radius through point of contact	• ¹ $x + 2y = 15$	
		• ² substitute for y	• ² $x+2(2x)=15$	
		• ³ determine <i>x</i> -coordinate	• ³ 3 • ⁴ 6	
		• ⁴ determine <i>y</i> -coordinate	• 0	
Note	s:			

- 1. In Methods 1 and 2, treat an absence of brackets at the •¹ stage as bad form only if corrected on the next line of working.
- 2. In Methods 1 and 2, \bullet^1 is only available if the '=0' appears by the \bullet^2 stage.
- 3. In Methods 1 and 2, if a candidate arrives at an equation which is not a quadratic \bullet^3 and \bullet^4 are unavailable.
- 4. Where the quadratic obtained at \bullet^2 in Methods 1 and 2, does not have repeated roots \bullet^3 and \bullet^4 are not available.
- 5. In Method 3 accept $y-4 = -\frac{1}{2}(x-7)$, $-\frac{1}{2} = \frac{4-y}{7-x}$ or equivalent for \bullet^{-1} .
- 6. In Method 3 \cdot^2 , \cdot^3 and \cdot^4 are unavailable to candidates who find the equation of any other line.
- 7. For (3,6) without working, award 0/4.
- 8. For answer of (3,6) verified in both equations, or (3,6) generated by the linear equation and verified in the equation of the circle, award 4/4.

Question	Generic scheme	Illustrative scheme Max mark
7. (continued)		
Commonly Obse	erved Responses:	
the circle :	ubstitution into the equation of	
x = 3 (3) ² + y ² - 14(3)	$\mathbf{\cdot}^3 \checkmark$	
$y^{2}-8y+12=0$ (y-2)(y-6)= y=6	0	
2	to explicitly consider $y = 2$	
However, (3,6) and (3,2)	• ⁴ ×	

Q	uestion	Generic scheme	Illustrative scheme	Max mark
8.		• ¹ use discriminant	• ¹ $(m-4)^2 - 4(1)(2m-3)$	4
		• ² apply condition	• ² $(m-4)^2 - 4(1)(2m-3) < 0$	
		• ³ identify roots of quadratic expression	• ³ 2, 14	
Noto		• ⁴ state range with justification	• ⁴ 2 < m < 14 with eg labelled sketch or table of signs	

Notes:

1. At \bullet^1 , treat the inconsistent use of brackets: For example $m-4^2-4(1)(2m-3)$ or

 $(m-4)^2 - 4 \times 1 \times 2m - 3$ as bad form only if the candidate deals with the unbracketed terms correctly in the next line of working.

- 2. Where candidates express *a*, *b* and *c* in terms of *m*, and then state $b^2 4ac < 0$, award \bullet^2 .
- 3. If candidates have the condition 'discriminant > 0', 'discriminant \leq 0' or 'discriminant \geq 0', then \bullet^2 is lost but \bullet^3 and \bullet^4 are available.
- 4. Ignore the appearance of $b^2 4ac = 0$ where the correct condition has subsequently been applied.
- 5. If candidates only work with the condition 'discriminant = 0', then \bullet^2 and \bullet^4 are unavailable.
- 6. Accept the appearance of 2 and 14 within inequalities for \bullet^3 .
- 7. At •⁴ accept "m > 2 and m < 14" or "m > 2, m < 14" together with the required justification.
- 8. For the appearance of x in any expression of the discriminant, no further marks are available.

Commonly Observed Responses:	
Candidate A - no expressions for a , b and c No real roots $b^2 - 4ac < 0$	Candidate B
$m^2 - 16m + 28 = 0$ $\bullet^1 \checkmark$ $m = 2, m = 14$ $\bullet^3 \checkmark$	$(m-4)^2 - 4(1)(2m-3)$ • ¹ \checkmark $m^2 - 16m + 28 = 0$
2 < m < 14 $2 < m < 14$ $2 < m < 14$ $2 < m < 14$	$m = 2, m = 14 \qquad \qquad \bullet^3 \checkmark$ $b^2 - 4ac < 0 \qquad \qquad \setminus /$
In this case • ² is only available where • ⁴ is awarded	2 < m < 14 In this case • ² is only available where • ⁴ is awarded

Question	Question Generic scheme			Illustrative scheme		Max mark
8. (continued)						
Candidate C $(m-4)^2 - 4(1)(2)^2$ $b^2 - 4ac = 0$ $m^2 - 16m + 28 = 1$,	• ¹ ✓	Candidate D $(m-4)^2 - 4(1)^2$ $m^2 - 16m + 28$		• ¹ ✓	
m = 2, m = 14 $m^2 - 16m + 28 < 2 < m < 14$		• ³ ✓ • ² ✓ • ⁴ ✓	<i>m</i> = 2, <i>m</i> = 14 2 < <i>m</i> < 14	2 14	• ³ ✓ • ⁴ ✓ 2	
Candidate E - no $m - 4^2 - 4(1)(2m)$ -7m - 4 < 0	ot solving a quadı 1-3)<0	ratic $\bullet^1 \times \bullet^2 \checkmark \bullet^3 \times$				
$m > -\frac{4}{7}$		• ⁴ ✓ 2				

Qu	lestion	Generic scheme	Illustrative scheme	Max mark
9.		Method 1 • ¹ apply $\log_a x + \log_a y = \log_a xy$	Method 1 • $\log_a(5 \times 80)$ stated or implied by • ³	3
		• ² apply $m \log_a x = \log_a x^m$	• ² $-\log_a 10^2$ stated or implied by • ³	
		• ³ apply $\log_a x - \log_a y = \log_a \frac{x}{y}$ and	• ³ $\log_a 4$	
		express in required form		
		Method 2	Method 2	
		• ¹ apply $m \log_a x = \log_a x^m$	• ¹ $-\log_a 10^2$ stated or implied by • ³	
		• ² apply $\log_a x - \log_a y = \log_a \frac{x}{y}$	• ² + $\log_a\left(\frac{80}{10^2}\right)$ stated or	
			implied by \bullet^3	
		• ³ apply $\log_a x + \log_a y = \log_a xy$ and express in required form	• ³ $\log_a 4$	
Notes	5:	· ·		
ot 3. W 4. W 5. Do 6. Co 7. W	oserved res here candio here candio o not penal orrect answ here candio	ponses. dates apply the laws of logarithms in th dates do not consider the '2', a maxim ise the omission of the base of the loga ver with no working, award 3/3.	• ² may only be awarded for working wit	I B.
Comn	nonly Obse	erved Responses:		
$\log_a 5$	idate A $+2\log_a\left(\frac{80}{10}\right)$	$\left(\frac{1}{2}\right)$	Candidate B $\log_a 400 - 2\log_a 10$ $2\log_a \left(\frac{400}{10}\right)$	
$2\log_a$	$\left(\frac{5\times80}{10}\right)$		$\frac{\log_a}{\log_a(40)^2}$	
$\log_a($			log _a 1600 Award 2/3	
$\log_a 1$				
		noring the 2		
	$5 + \log_a 80 -$			
	$5 + \log_a \frac{80}{10}$			
$\log_a 4$	40			
Awar				

Q	Question		Generic scheme	Illustrative scheme	Max mark
10.	(a)		 ¹ use 1 in synthetic division or in evaluation of quartic 	• ¹ 1 2 3 -4 -3 2 2 or $2 \times (1)^4 + 3 \times (1)^3 - 4 \times (1)^2$ $-3 \times (1) + 2$	2
			• ² complete division/evaluation a interpret result	nd $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Notes:					
		nicat	ion at \bullet^2 must be consistent with w	orking at that stage i.e. a candidate's work	ing
n	nust ar	rive l	egitimately at 0 before \bullet^2 can be a		
2. A	•	-	f the following for \bullet^2 :		
	•	' <i>f</i> (1)	=0 so $(x-1)$ is a factor'		
			remainder $=$ 0, it is a factor'		
			-	rord 'factor' by 'so', 'hence', \therefore , $ ightarrow$, \Rightarrow ,	etc.
3. D		•	It any of the following for \bullet^2 :	(0) without commont	
			e underlining the 'O' or boxing the I is a factor', ' is a root'	0 without comment	
			ord 'factor' only, with no link.		
Com			erved Responses:		
			rid method	Candidate B - grid method	
		$2x^{3}$		$2x^3$	
x		$2x^4$	$5x^3$	x $2x^4$ $5x^3$	
-1		$2x^3$	•1 ✓		✓
'	L		· · · · ·		
		$2x^3$	$5x^2$ x -2	$2x^3$ $5x^2$ x -2	
x		$2x^4$	$5x^3$ x^2 $-2x$	$x \qquad 2x^4 \qquad 5x^3 \qquad x^2 \qquad -2x$	
-1	_	$2x^3$	$-5x^2$ $-x$ 2	-1 $-2x^3$ $-5x^2$ $-x$ 2	
			'with no remainder'		
. (1) :-	- f	tor • ² 🗸	$\therefore (x-1)(2x^3+5x^2+x-2) = 2x^4+3x^3-4x^2-$	-3x+2
· · (<i>x</i>	-1) is	a fac		(x-1) is a factor • ²	✓

	Questic	n	Generic scheme	Illustrative scheme	Max mark
10.	(b)		• ³ identify cubic and attempt to factorise	• ³ eg -1 2 5 1 -2 -2 -3 2 3 -2 or -2 2 5 1 -2 -4 -2 2 1 -2	4
			• ⁴ find second factor	• ⁴ eg -1 2 5 1 -2 <u>-2 -3 2</u> 2 3 -2 0 leading to $(x+1)$ or -2 2 5 1 -2 <u>-4 -2 2</u> 2 1 -1 0 leading to $(x+2)$	
			 •⁵ identify quadratic •⁶ complete factorisation 	• ⁵ $2x^2 + 3x - 2$ or $2x^2 + x - 1$ • ⁶ $(x-1)(x+1)(2x-1)(x+2)$ stated explicitly	
Not	-			1	<u> </u>
	-	-	opearance of $= 0$.		
			who arrive at $(x-1)(x+1)(2x^2+3x-2)$		
			ng division or by inspection, gain \bullet^3 , \bullet^4 and didate only identifies additional factors		

7. •³ and •⁴ may be awarded for applications of synthetic division even when previous trials contain errors. •⁵ and •⁶ are available.

Question	Question Generic scheme		Illustrative scheme	Max mark
10. (b) (continu				
Commonly Obse	erved Responses:			
Candidate C - gr (a) $x \qquad 2x^4$ $-1 \qquad -2x^3$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(a)	andidate D - grid method $2x^3 5x^2 x -2$ x $2x^4 5x^3 x^2 -2x$ $-1 -2x^3 -5x^2 -x 2$	
expression (whic (a)) AND the te	r evidence of the cul ch may be in the gric rms in the diagonal b second and third ter ly.	• ³ ✓ bic 1 from part boxes rms in the	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S
$2x^{2}$ x $2x^{3}$ $+1$ $2x^{2}$ $2x^{2} + 3x - 2$	$ \begin{array}{cccc} 3x & -2 \\ 3x^2 & -2x \\ 3x & -2 \end{array} $	•4 🖌 +	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	• ⁴ • • ⁵ •
(x-1)(x+1)(2x)	-1)(x+2)	• ⁶ ✓ (x·	(x+2)(x+1)(2x-1)	•6 🗸
—	+2)	$ \begin{array}{c} \frac{1}{2} \\ \bullet^{3} \checkmark \bullet^{4} \checkmark \\ \bullet^{5} \checkmark \qquad (x) \\ $	1 3 2 2 6 4 0	•4 🗸

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
11.	(a)		• ¹ use compound angle formula	• $k \cos x^{\circ} \cos a^{\circ} + k \sin x^{\circ} \sin a^{\circ}$ stated explicitly	4
			• ² compare coefficients	• ² $k \cos a^\circ = 1, k \sin a^\circ = \sqrt{3}$ stated explicitly	
			• ³ process for k	• ³ $k=2$	
			• ⁴ process for <i>a</i> and express in required form	• ⁴ $2\cos(x-60)^{\circ}$	

Notes:

1. Accept $k(\cos x^{\circ}\cos a^{\circ} + \sin x^{\circ}\sin a^{\circ})$ for \bullet^{1} . Treat $k\cos x^{\circ}\cos a^{\circ} + \sin x^{\circ}\sin a^{\circ}$ as bad form only if the equations at the \bullet^{2} stage both contain k.

- 2. Do not penalise the omission of degree signs.
- 3. $2\cos x^{\circ}\cos a^{\circ} + 2\sin x^{\circ}\sin a^{\circ}$ or $2(\cos x^{\circ}\cos a^{\circ} + \sin x^{\circ}\sin a^{\circ})$ is acceptable for \bullet^{1} and \bullet^{3} .
- 4. •² is not available for $k \cos x^{\circ} = 1, k \sin x^{\circ} = \sqrt{3}$, however •⁴ may still be gained- see Candidate E
- 5. •³ is only available for a single value of k, k > 0.
- 6. •³ is not available to candidates who work with $\sqrt{4}$ throughout parts (a) and (b) without explicitly simplifying at any stage. •⁴ is still available.
- 7. •⁴ is not available for a value of a given in radians.
- 8. Candidates may use any form of the wave function for \bullet^1 , \bullet^2 and \bullet^3 . However, \bullet^4 is only available if the wave is interpreted in the form $k \cos(x-a)^\circ$.
- 9. Evidence for \bullet^4 may not appear until part (b).

Commonly Observed Responses:						
Candidate A	• ¹ ^	Candidate B - inconsistency $k \cos x^{\circ} \cos a^{\circ} + k \sin x^{\circ} \sin a^{\circ} \bullet^{1} \checkmark$	Candidate C $\cos x^{\circ} \cos a^{\circ} + \sin x^{\circ} \sin a^{\circ} \bullet^{1} \varkappa$			
$2\cos a^\circ = 1$ $2\sin a^\circ = \sqrt{3}$	• ² ✓ • ³ ✓	$\cos a^\circ = 1$ $\sin a^\circ = \sqrt{3}$ • ² *	$\cos a^{\circ} = 1$ $\sin a^{\circ} = \sqrt{3}$ k = 2 $\bullet^{2} \checkmark_{2}$ $\bullet^{3} \checkmark$			
$\tan a^\circ = \sqrt{3}$ $a = 60$		$\tan a^\circ = \sqrt{3}$ $a = 60$	$\tan a^\circ = \sqrt{3}$ $a = 60$			
$2\cos(x-60)^\circ$	•4 🗸	$2\cos(x-60)^\circ$ $\bullet^3 \checkmark \bullet^4 \checkmark$	$2\cos(x-60)^\circ$ • ⁴ ×			

Question	Gener	ric scheme Illu		strative scheme	Max mark	
11. (a) (continu	1. (a) (continued)					
Candidate D - errors at \bullet^2 $k \cos x^{\circ} \cos a^{\circ} + k \sin x^{\circ} \sin a^{\circ} \bullet^1 \checkmark$		Candidate E - use of x at \bullet^2 $k \cos x^\circ \cos a^\circ + k \sin x^\circ \sin a^\circ \bullet^1 \checkmark$		Candidate F $k \sin A \cos B + k \cos A \sin B$	• ¹ ¥	
$k \cos a^\circ = \sqrt{3}$ $k \sin a^\circ = 1$	• ² ×	$k \cos x^{\circ} = 1$ $k \sin x^{\circ} = \sqrt{3}$	• ² x	$k\cos A = 1$ $k\sin A = \sqrt{3}$	• ² ¥	
$\tan a^\circ = \frac{1}{\sqrt{3}}$ $a = 30$		$\tan x^{\circ} = \sqrt{3}$ $x = 60$		$\tan A = \sqrt{3}$		
$2\cos(x-30)^\circ$	• ³ •• ⁴ • ¹	$2\cos(x-60)^\circ$	• ³ •• ⁴ • ₁	$2\cos(x-60)^\circ$ • ³	• ⁴ √1	

Q	Question Generic scheme		Generic scheme	Illustrative scheme	Max mark
11.	(b)		 ⁵ exactly two roots identifiable from graph 	• ⁵ (150,0) and (330,0)	3
			 ⁶ coordinates of exactly two turning points identifiable from graph 	• ⁶ (60,2) and (240,-2)	
			• ⁷ <i>y</i> -intercept and value of <i>y</i> at <i>x</i> = 360 identifiable from graph	• ⁷ 1	
Note	es:				
10. •	⁵ , ● ⁶ a	nd • ⁷	are only available for attempting to	o draw a "cosine" graph with a period of 36	0°.
12. V 13. C 14. F	Vertica Candid Candid Cor any	al mar ate's ates (y inco	G and H. rrect horizontal translation of the	$r \leq 360$. Ith the equation obtained in (a), see also graph of the wave function arrived at in par	rt (a)
C	only ●°	is ava	ailable.		
Com	monly	/ Obse	erved Responses:		
Cano	lidate	G - i	ncorrect translation	Candidate H - incorrect equation	
(a)	2 c	os(x -	-60) $^{\circ}$ - correct equation	(a) $2\cos(x+60)^\circ$ - incorrect equation	
(b)	Ske	etch o	t translation: f $2\cos(x+60)^\circ$ available	(b) Sketch of $2\cos(x+60)^{\circ}$ all 3 marks available	

Qı	Question		Generic scheme	Illustrative scheme	Max mark					
12.			$ullet^1$ write in differentiable form	• ¹ $12x^{\frac{1}{3}}$ stated or implied by • ²	4					
			• ² differentiate	• ² $12 \times \frac{1}{3} \times x^{-\frac{2}{3}}$						
			• ³ solve for $a^{-\frac{2}{3}}$ or $a^{\frac{2}{3}}$	• $a^{-\frac{2}{3}} = \frac{1}{4}$ or $a^{\frac{2}{3}} = 4$						
			• ⁴ solve for a	•4 $a = 8$						
Note	s:									
2. W 3. A 4. •	1. • ² is only available for differentiating a term with a fractional index. 2. Where candidates attempt to integrate or make no attempt to differentiate, only • ¹ is available. 3. Accept $x^{-\frac{2}{3}} = \frac{1}{4}$ or $x^{\frac{2}{3}} = 4$ at • ³ . See Candidates A and B. 4. • ⁴ is only available where the expression at • ² is of the form $kx^{-\frac{m}{n}}$ where $m \neq 1$. 5. Do not penalise the inclusion of -8 at • ⁴ .									
Com	monly	Obse	erved Responses:							
Cand	lidate /	A - w	vorking in terms of x throughout	Candidate B						
$x^{-\frac{2}{3}} =$	$=\frac{1}{4}$		• ³ 🗸	$x^{-\frac{2}{3}} = \frac{1}{4}$ • ³						
x = 8	3		• ⁴ x	$\begin{pmatrix} x = 8 \\ a = 8 \end{pmatrix} \bullet^4 \checkmark$						
Cand	lidate	С		Candidate D - partly differentiated						
f(x))=12x	3/2	• ¹ x	$f(x) = 12x^{\frac{1}{3}} \qquad \bullet^1 \checkmark$						
	z)=18x	$x^{\frac{1}{2}}$	• ² ✓ 1	$f(x) = 12x^{\frac{1}{3}} \qquad \bullet^{1} \checkmark$ $f'(x) = 12 \times \frac{1}{3}x^{\frac{4}{3}} \qquad \bullet^{2} \checkmark$						
$a^{\frac{1}{2}} =$	<u>1</u> 18		• ³ √ 1	$1 = 4a^{\frac{4}{3}}$						
a = -	1 324		• ⁴ ✓ 2	$\frac{1}{4} = a^{\frac{4}{3}} \qquad \bullet^3 \checkmark_1$						
				$a = \frac{1}{\sqrt{8}} \qquad \qquad \bullet^4 \checkmark_2$						

for \bullet^3 to be awarded.	Question		on	Generic scheme	Illustrative scheme	Max mark					
Notes:•* -4 or $-\frac{1}{2}$ •* find perpendicular gradient •* find equation of perpendicular bisector•* $\frac{1}{4}$ •* 4 y = x + 19Notes:1. •* is only available as a consequence of using a perpendicular gradient and a mid-point.2. The gradient of the perpendicular bisector must appear in fully simplified form at •* or •* stage for •* to be awarded.3. At •* accept $4y - x = 19$, $4y - x - 19 = 0$, or any other rearrangement of the equation where the 	13.	(a)		• ¹ find midpoint of PQ	• ¹ (5,6)	4					
Notes:1. •4 find equation of perpendicular bisector•4 •4 $y = x + 19$ Notes:1. •4 is only available as a consequence of using a perpendicular gradient and a mid-point.2. The gradient of the perpendicular bisector must appear in fully simplified form at •3 or •4 stage for •3 to be awarded.3. At •4 accept $4y - x = 19$, $4y - x - 19 = 0$, or any other rearrangement of the equation where the constant terms have been simplified.Commonly Observed Responses:(b)•3 identify x-coordinate of centre •6 find y-coordinate of centre •7 find radius •8 state equation of circle•3 9 •6 7 •7 $\sqrt{34}$ •8 state equation of circle•4 •6 7 •7 $\sqrt{34}$ 4. bo not accept "centre = (9,2)" as evidence of •5. 5. Where candidates use PQ, QR or PR as the diameter of the circle no marks are available.•7 •7 and •6 are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle.7. Accept $r^2 = 34$ for •7. 8. $(x - 9)^2 + (y - 7)^2 = (\sqrt{34})^2$ does not gain •8.Candidate B - perpendicular bisector of PR Perpendicular bisector of PR Perpendi				• ² find gradient of PQ	• ² -4 or $-\frac{8}{2}$						
Notes:1. •4* is only available as a consequence of using a perpendicular gradient and a mid-point.2. The gradient of the perpendicular bisector must appear in fully simplified form at •3 or •4 stage for •3 to be awarded.3. At •4 accept $4y - x = 19$, $4y - x - 19 = 0$, or any other rearrangement of the equation where the constant terms have been simplified.Commonly Observed Responses:(b)•5 identify x-coordinate of centre •6 find y-coordinate of centre •7 find radius •8 state equation of circle•5 9 •6 7 •6 7 •7 $\sqrt{34}$ 4Notes:•8 state equation of circle•8 $(x-9)^2 + (y-7)^2 = 34$ 4Notes:•8 are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle.•7 •7 and •8 are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle.7. Accept $r^2 = 34$ for •7.8. $(x-9)^2 + (y-7)^2 = (\sqrt{34})^2$ does not gain •8.Commonly Observed Responses:Candidate A - horizontal line through midpoint of PQ Centre = (9,6) mer = (9,6) mer = $\sqrt[6]{x} \cdot \sqrt[6]{x} \cdot \sqrt[6]{x}$ Candidate A - horizontal line through midpoint of PQ Centre = (9,6) mer = $\sqrt[6]{x} \cdot \sqrt[6]{x} \cdot \sqrt[6]{x}$ Candidate A - horizontal line through midpoint of PQ Centre = (9,6) mer = $\sqrt[6]{x} \cdot \sqrt[6]{x} \cdot \sqrt[6]{x}$ Candidate B - perpendicular bisector of PR Perpendicular bisector of PR: Perpendicular bisector of PR: Perpendicular bisector of PR: Perpendicular bisector of PR: Perpendicular bisector of PR:				• ⁴ find equation of perpendicular							
1.• ⁴ is only available as a consequence of using a perpendicular gradient and a mid-point.2.The gradient of the perpendicular bisector must appear in fully simplified form at • ³ or • ⁴ stage for • ³ to be awarded.3.At • ⁴ accept $4y - x = 19$, $4y - x - 19 = 0$, or any other rearrangement of the equation where the constant terms have been simplified.Commonly Observed Responses:(b)• ⁵ identify x-coordinate of centre • ⁶ find y-coordinate of centre • ⁶ find y-coordinate of centre • ⁷ find radius • ⁸ state equation of circle• ⁵ 9 • ⁶ 7 • ⁷ $\sqrt{34}$ 4.Do not accept "centre = (9,2)" as evidence of • ⁵ . 5. Where candidates use PQ, QR or PR as the diameter of the circle no marks are available. 6. • ⁷ and • ⁸ are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle. 7. Accept $r^2 = 34$ for • ⁷ . 8. $(x-9)^2 + (y-7)^2 = (\sqrt{34})^2$ does not gain • ⁸ .Candidate A - horizontal line through midpoint of PQ Centre = (9,6) Entre = (9,6) Entre = (9,6) Entre = (9,7) Entre = (9,7) Entre = (9,7)				bisector	• $4y = x + 19$						
 2. The gradient of the perpendicular bisector must appear in fully simplified form at •³ or •⁴ stage for •³ to be awarded. 3. At •⁴ accept 4y - x = 19, 4y - x - 19 = 0, or any other rearrangement of the equation where the constant terms have been simplified. Commonly Observed Responses: (b) •⁵ identify x-coordinate of centre •⁶ find y-coordinate of centre •⁷ find radius •⁸ state equation of circle •⁷ √34 Notee: 4. Do not accept "centre = (9,2)" as evidence of •⁵. 5. Where candidates use PQ, QR or PR as the diameter of the circle no marks are available. 6. •⁷ and •⁸ are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle. 7. Accept r² = 34 for •⁷. 8. (x - 9)² + (y - 7)² = (√34)² does not gain •⁸. Commonly Observed Responses: Candidate A - horizontal line through midpoint of PQ Centre = (9,6) •⁵ · •⁶ · * Radius = 5 · ·⁷ × ·⁶ · * ·⁷ × 	Note	s:									
(b) \bullet^{5} identify <i>x</i> -coordinate of centre \bullet^{6} find <i>y</i> -coordinate of centre \bullet^{6} find <i>y</i> -coordinate of centre \bullet^{7} find radius \bullet^{8} state equation of circle \bullet^{8} ($x-9$) ² + ($y-7$) ² = 34 Notes: 4. Do not accept "centre = (9,2)" as evidence of \bullet^{5} . 5. Where candidates use PQ, QR or PR as the diameter of the circle no marks are available. 6. \bullet^{7} and \bullet^{8} are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle. 7. Accept $r^{2} = 34$ for \bullet^{7} . 8. $(x-9)^{2} + (y-7)^{2} = (\sqrt{34})^{2}$ does not gain \bullet^{8} . Commonly Observed Responses: Candidate A - horizontal line through midpoint of PQ Centre = (9,6) $\bullet^{5} \checkmark \bullet^{6} \bigstar$ Radius = 5 $\bullet^{7} \bigstar$	3. At \bullet^4 accept $4y - x = 19$, $4y - x - 19 = 0$, or any other rearrangement of the equation where the constant terms have been simplified.										
Indicating in coordinate of centreImage: find product of centreImage: Image:	Com	moniy	UDS	erved Responses:							
Indicating in coordinate of centreImage: find product of centreImage: Image:											
•7 find radius•7 $\sqrt{34}$ •8 state equation of circle•7 $\sqrt{34}$ •8 $(x-9)^2 + (y-7)^2 = 34$ Notes:4. Do not accept "centre = (9,2)" as evidence of •5.5. Where candidates use PQ, QR or PR as the diameter of the circle no marks are available.6. •7 and •8 are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle.7. Accept $r^2 = 34$ for •7.8. $(x-9)^2 + (y-7)^2 = (\sqrt{34})^2$ does not gain •8.Candidate A - horizontal line through midpoint of PQ Centre = (9,6) Radius = 5Candidate B - perpendicular bisector of PR Perpendicular bisector of PR: $y = x - 2$ Centre = (9,7) $\cdot 5 \checkmark \cdot 6 \checkmark$		(b)		• ⁵ identify <i>x</i> -coordinate of centre	• ⁵ 9	4					
Notes: 4. Do not accept "centre = (9,2)" as evidence of \bullet^5 . 5. Where candidates use PQ, QR or PR as the diameter of the circle no marks are available. 6. \bullet^7 and \bullet^8 are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle. 7. Accept $r^2 = 34$ for \bullet^7 . 8. $(x-9)^2 + (y-7)^2 = (\sqrt{34})^2$ does not gain \bullet^8 . Commonly Observed Responses: Candidate A - horizontal line through midpoint of PQ Centre = (9,6) Radius = 5 $\bullet^5 \checkmark \bullet^6 \bigstar$ $\bullet^7 \bigstar$				• ⁶ find <i>y</i> -coordinate of centre	• ⁶ 7						
Notes: 4. Do not accept "centre = (9,2)" as evidence of \bullet^5 . 5. Where candidates use PQ, QR or PR as the diameter of the circle no marks are available. 6. \bullet^7 and \bullet^8 are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle. 7. Accept $r^2 = 34$ for \bullet^7 . 8. $(x-9)^2 + (y-7)^2 = (\sqrt{34})^2$ does not gain \bullet^8 . Commonly Observed Responses: Candidate A - horizontal line through midpoint of PQ Centre = (9,6) Radius = 5 $\bullet^5 \checkmark \bullet^6 \bigstar$ $\bullet^7 \bigstar$				• ⁷ find radius	•7 √34						
4. Do not accept "centre = (9,2)" as evidence of \bullet^5 . 5. Where candidates use PQ, QR or PR as the diameter of the circle no marks are available. 6. \bullet^7 and \bullet^8 are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle. 7. Accept $r^2 = 34$ for \bullet^7 . 8. $(x-9)^2 + (y-7)^2 = (\sqrt{34})^2$ does not gain \bullet^8 . Commonly Observed Responses: Candidate A - horizontal line through midpoint of PQ Centre = (9,6) $\bullet^5 \checkmark \bullet^6 \times \bullet^7 \times \bullet^6 \times \bullet^7 \times \bullet^6 \checkmark$ Radius = 5 $\bullet^7 \times \bullet^6 \times \bullet^7 \times \bullet^6 \times \bullet^7 \times \bullet^6 \times \bullet^7 \times \bullet^6 \vee \bullet^6 \times \bullet^7 \times \bullet^6 \vee \bullet^6 \vee \bullet^6 \vee \bullet^7 \times \bullet^6 \vee \bullet^7 \times \bullet^6 \vee \bullet^7 \times \bullet^6 \vee \bullet^6 \vee \bullet^7 \times \bullet^6 \vee \bullet^6 \vee \bullet^7 \times \bullet^7 \times \bullet^7 \times \bullet^7 \times \bullet^7 \times \bullet^7 \bullet^7 \bullet^7 \bullet^7 \bullet^7 \bullet^7 \bullet^7 \bullet^7 \bullet^7 \bullet^7$				• ⁸ state equation of circle	• ⁸ $(x-9)^2 + (y-7)^2 = 34$						
5. Where candidates use PQ, QR or PR as the diameter of the circle no marks are available. 6. \bullet^7 and \bullet^8 are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle. 7. Accept $r^2 = 34$ for \bullet^7 . 8. $(x-9)^2 + (y-7)^2 = (\sqrt{34})^2$ does not gain \bullet^8 . Commonly Observed Responses: Candidate A - horizontal line through midpoint of PQ Centre = (9,6) Radius = 5 $\bullet^5 \checkmark \bullet^6 \bigstar$ $\bullet^7 \bigstar$ Candidate B - perpendicular bisector of PR Perpendicular bisector of PR: $y = x-2$ Centre = (9,7) $\bullet^5 \checkmark \bullet^6 \checkmark$	Note	s:									
Commonly Observed Responses:Candidate A - horizontal line through midpoint of PQ Centre = (9,6)Candidate B - perpendicular bisector of PR Perpendicular bisector of PR: $y = x - 2$ Centre = (9,7)Centre = (9,6) Radius = 5 $\bullet^5 \checkmark \bullet^6 \bigstar$ $\bullet^7 \bigstar$	 5. Where candidates use PQ, QR or PR as the diameter of the circle no marks are available. 6. •⁷ and •⁸ are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle. 										
Candidate A - horizontal line through midpoint of PQCandidate B - perpendicular bisector of PR Perpendicular bisector of PR: $y = x - 2$ Centre = (9,6)Candidate B - perpendicular bisector of PR Perpendicular bisector of PR: $y = x - 2$ Centre = (9,7)Radius = 5 $\bullet^5 \checkmark \bullet^6 \bigstar$ $\bullet^7 \bigstar$	8. $(x-9)^2 + (y-7)^2 = (\sqrt{34})^2$ does not gain • ⁸ .										
of PQPerpendicular bisector of PR: $y = x - 2$ Centre = (9,6) $\bullet^5 \checkmark \bullet^6 \bigstar$ Radius = 5 $\bullet^7 \bigstar$ Perpendicular bisector of PR: $y = x - 2$ Centre = (9,7) $\bullet^5 \checkmark \bullet^6 \checkmark$ \vdots	Com	monly	y Obse	erved Responses:							
Radius = 5 $\bullet^7 \times$			• A - h		· ·	'n					
Equation: $(x-9)^2 + (y-6)^2 = 25$ • ⁸ ×	Radiu	us = 5	. ,	• ⁷ ¥	Centre = (9,7) ● ⁵ ✓ ● :	5 🗸					
	Equa	tion:	(x-9)	$(y)^{2} + (y-6)^{2} = 25 \bullet^{8} \times$							

[END OF MARKING INSTRUCTIONS]